skip to main content


Search for: All records

Creators/Authors contains: "King, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Wetlands are responsible for 20%–31% of global methane (CH4) emissions and account for a large source of uncertainty in the global CH4budget. Data‐driven upscaling of CH4fluxes from eddy covariance measurements can provide new and independent bottom‐up estimates of wetland CH4emissions. Here, we develop a six‐predictor random forest upscaling model (UpCH4), trained on 119 site‐years of eddy covariance CH4flux data from 43 freshwater wetland sites in the FLUXNET‐CH4 Community Product. Network patterns in site‐level annual means and mean seasonal cycles of CH4fluxes were reproduced accurately in tundra, boreal, and temperate regions (Nash‐Sutcliffe Efficiency ∼0.52–0.63 and 0.53). UpCH4 estimated annual global wetland CH4emissions of 146 ± 43 TgCH4 y−1for 2001–2018 which agrees closely with current bottom‐up land surface models (102–181 TgCH4 y−1) and overlaps with top‐down atmospheric inversion models (155–200 TgCH4 y−1). However, UpCH4 diverged from both types of models in the spatial pattern and seasonal dynamics of tropical wetland emissions. We conclude that upscaling of eddy covariance CH4fluxes has the potential to produce realistic extra‐tropical wetland CH4emissions estimates which will improve with more flux data. To reduce uncertainty in upscaled estimates, researchers could prioritize new wetland flux sites along humid‐to‐arid tropical climate gradients, from major rainforest basins (Congo, Amazon, and SE Asia), into monsoon (Bangladesh and India) and savannah regions (African Sahel) and be paired with improved knowledge of wetland extent seasonal dynamics in these regions. The monthly wetland methane products gridded at 0.25° from UpCH4 are available via ORNL DAAC (https://doi.org/10.3334/ORNLDAAC/2253).

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. Abstract

    In the past century, most eruptions of Steamboat Geyser in Yellowstone National Park's Norris Geyser Basin were mainly clustered in three episodes: 1961–1969, 1982–1984, and ongoing since 2018. These eruptive episodes resulted in extensive disturbance to surrounding trees. To characterize tree response over time as an indicator of geyser activity adjustments to climate variability, aerial and ground images were analyzed to document changes in tree coverage around the geyser since 1954. Radiocarbon dating of silicified tree remnants from within 14 m of the geyser vent was used to examine geyser response to possible variations in decadal to centennial precipitation patterns. We searched for atypical or absent growth rings in cores from live trees in years associated with large geyser eruptions. Photographs indicate that active eruptive phases have adversely affected trees up to 30 m from the vent, primarily in the dominant downwind direction. Radiocarbon dates indicate that the geyser formed before 1878, in contrast to the birthdate reported in historical documents. Further, the ages of the silicified trees cluster within three episodes that are temporally correlated with periods of relative drought in the Yellowstone region during the 15th–17th centuries. The discontinuous growth of trees around the geyser suggests that changes in eruptive patterns occur in response to decadal to multidecadal droughts. This inference is supported by the lack of silicified specimens with more than 20 annual rings and by the existence of atypical or missing rings in live trees during periods of extended geyser activity.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Abstract Two reports of Antarctic Region potential new record high temperature observations (18.3°C, 6 February 2020 at Esperanza station and 20.8°C, 9 February 2020 at a Brazilian automated permafrost monitoring station on Seymour Island) were evaluated by a World Meteorological Organization (WMO) panel of atmospheric scientists. The latter figure was reported as 20.75°C in the media. The panel considered the synoptic situation and instrumental setups. It determined that a large high-pressure system over the area created föhn conditions and resulted in local warming for both situations. Examination of the data and metadata of the Esperanza station observation revealed no major concerns. However, analysis of data and metadata of the Seymour Island permafrost monitoring station indicated that an improvised radiation shield led to a demonstrable thermal bias error for the temperature sensor. Consequently, the WMO has accepted the 18.3° C value for 12 noon (LST) 6 February 2020 [1500 UTC 6 February 2020] at the Argentine Esperanza station as the new “Antarctic Region [continental, including mainland and surrounding islands] highest temperature recorded observation” but rejected the 20.8° C observation at the Brazilian automated Seymour Island permafrost monitoring station as biased. The committee strongly emphasizes the permafrost monitoring station was not badly designed for its purpose, but the project investigators were forced to improvise a non-optimal radiation shield after losing the original covering. Secondly, with regard to media dissemination of this type of information, the committee urges increased caution in early announcements as many media outlets often tend to sensationalize and mischaracterize potential records. 
    more » « less
  5. Zhang, Jianhua (Ed.)
    Abstract The influence of aquaporin (AQP) activity on plant water movement remains unclear, especially in plants subject to unfavorable conditions. We applied a multitiered approach at a range of plant scales to (i) characterize the resistances controlling water transport under drought, flooding, and flooding plus salinity conditions; (ii) quantify the respective effects of AQP activity and xylem structure on root (Kroot), stem (Kstem), and leaf (Kleaf) conductances; and (iii) evaluate the impact of AQP-regulated transport capacity on gas exchange. We found that drought, flooding, and flooding plus salinity reduced Kroot and root AQP activity in Pinus taeda, whereas Kroot of the flood-tolerant Taxodium distichum did not decline under flooding. The extent of the AQP control of transport efficiency varied among organs and species, ranging from 35–55% in Kroot to 10–30% in Kstem and Kleaf. In response to treatments, AQP-mediated inhibition of Kroot rather than changes in xylem acclimation controlled the fluctuations in Kroot. The reduction in stomatal conductance and its sensitivity to vapor pressure deficit were direct responses to decreased whole-plant conductance triggered by lower Kroot and larger resistance belowground. Our results provide new mechanistic and functional insights on plant hydraulics that are essential to quantifying the influences of future stress on ecosystem function. 
    more » « less
  6. Metahuman systems are new, emergent, sociotechnical systems where machines that learn join human learning and create original systemic capabilities. Metahuman systems will change many facets of the way we think about organizations and work. They will push information systems research in new directions that may involve a revision of the field’s research goals, methods and theorizing. Information systems researchers can look beyond the capabilities and constraints of human learning toward hybrid human/machine learning systems that exhibit major differences in scale, scope and speed. We review how these changes influence organization design and goals. We identify four organizational level generic functions critical to organize metahuman systems properly: delegating, monitoring, cultivating, and reflecting. We show how each function raises new research questions for the field. We conclude by noting that improved understanding of metahuman systems will primarily come from learning-by-doing as information systems scholars try out new forms of hybrid learning in multiple settings to generate novel, generalizable, impactful designs. Such trials will result in improved understanding of metahuman systems. This need for large-scale experimentation will push many scholars out from their comfort zone, because it calls for the revitalization of action research programs that informed the first wave of socio-technical research at the dawn of automating work systems. 
    more » « less
  7. null (Ed.)
  8. Abstract

    High surface temperatures are important in Antarctica because of their role in ice melt and sea level rise. We investigate a high temperature event in December 1989 that gave record temperatures in coastal East Antarctica between 60° and 100°E. The high temperatures were associated with a pool of warm lower tropospheric air with December temperature anomalies of >14°C that developed in two stages over the Amery Ice Shelf. First, there was near‐record poleward warm advection within an atmospheric river. Second, synoptically driven downslope flow from the interior reached unprecedented December strength over a large area, leading to strong descent and further warming in the coastal region. The coastal easterly winds were unusually deep and strong, and the warm pool was advected westwards, giving a short period of high temperatures at coastal locations, including a surface temperature of 9.3°C at Mawson, the second highest in its 66‐year record.

     
    more » « less